New Guidelines for Costeffectiveness Models: A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force

Karen Kuntz ScD

Task Force Leads

Jaime Caro MDCM, FRCPC, FACP, Chair Uwe Siebert MD, MPH, MSc, ScD, Co-chair Karen Kuntz ScD, Co-chair Andrew Briggs DPhil, Co-chair

Poll of Audience Background

- Are you familiar with decision modeling used in cost-effectiveness analyses?
 - Yes, I have developed them
 - Yes, I have participated in projects with models
 - Yes, I have read studies that uses them
 - No

For those with experience:

- What types of models are you most familiar with?
 - Decision trees
 - Cohort Markov models
 - Individual-level Markov models
 - Discrete event simulation
 - Other

Background

- ISPOR has good infrastructure for developing best practice papers
 - SMDM has one paper on disaster modeling
- 2003 article in best practices in modeling (Weinstein et al., Value in Health)
- ② 2010 decision to update that paper with a series of papers and involve SMDM

Working Groups

Conceptual Modeling Working Group

Chair: Mark Roberts; Members: Murray Krahn; David Paltiel; Michael Chambers; Phil McEwan; Louise Russell

State-Transition Modeling Working Group

Chairs: Karen Kuntz; Uwe Siebert; Members: Oguzhan Alagoz; Doug Owens; David Cohen; Beate Jahn; Ahmed Bayoumi,

Modeling Discrete Event Simulation Working Group

Chairs: James Stahl; Jonathan Karnon; Members: Jörgen Möller; Javier Mar; Alan Brennan

Dynamic Transmission Modeling Working Group

Chairs: Richard Pitman; John Edmunds; Members: Maarten Postma; Greg Zaric; Marc Brisson; David Fisman; Mirjam Kretzschmar

<u>Model Parameter Estimation & Uncertainty Working Group</u>

Chair: Andrew Briggs; Members: Milt Weinstein; Mark Sculpher; Elisabeth Fenwick; David Paltiel; Jonathan Karnon

Model Transparency and Validation Working Group

Chairs: David Eddy; John Wong; Members: Joel Tsevat; William Hollingworth; Kathy McDonald

Published Papers

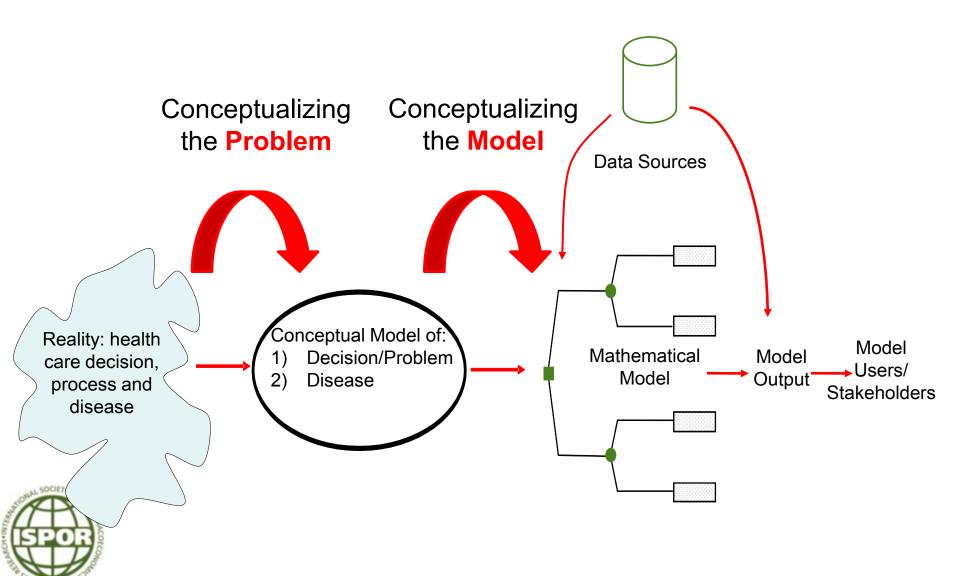
- Seven papers one from each working group and an overview paper
- Medical Decision Making 2012 Sept-Oct Issue
- Value in Health 2012 September Issue

Review Process

- All papers underwent external review
 - Broad representation
 - Reviewed/approved by journal editors
 - Peer review comments documented as well as responses
- Papers posted for members' review & comment
- Submission jointly to MDM & ViH
- © Editors review

Conceptualizing the model

Conceptual Framework



Conceptualizing the Model

- © Collaborate and consult to ensure that model adequately addresses decision problem & disease in question
- © Clear, written <u>statement of the decision problem</u>, objective and scope
- © Conceptual structure should
 - Be linked to the problem and not based on data availability
 - Be <u>used to identify key uncertainties in model structure</u>
 where sensitivity analyses could inform the impact of structural choices
 - Follow an explicit process to convert the conceptualization into an appropriate model structure: Influence diagrams, concept mapping, expert consultations
- Model <u>simplicity is desirable</u> for transparency, ease of validation and description, but
 - Must be <u>sufficiently complex to answer the question</u>
 - Should maintain face validity

Choice of Model Type

Problem Characteristic

- Simple, non-dynamic
- Based on "states" of health
 - State explosion
- Interactions, event-based, time-to-event
- Resource constraints, interactions

Model Type

- Decision tree
- State transition model
 - Individual microsimulation
- Dynamic transmission models, DES, agent-based
- DES, agent-based, dynamic transition models

For some decision problems, combinations of model types, hybrid models, and other modeling methodologies are appropriate

Uncertainty

- All modeling studies <u>should include an assessment of</u> <u>uncertainty</u> as it pertains to the decision problem
- Role of decision maker should be considered
- Authors should be aware that <u>terminology varies</u> within the decision modeling & related fields
 - carefully define terminology to avoid confusion
- Identify & incorporate <u>all relevant evidence</u>, rather than cherry-picking the "best" source
- Whether employing deterministic SA methods (point estimate & range) or probabilistic SA (parameterized distribution) the <u>link to the underlying evidence base</u> <u>should be clear</u>

Terminology

Preferred term	Concept	Other terms sometimes employed	Analogous concept in regression
First-order uncertainty	Random variability in outcomes between identical patients	VariabilityMonte Carlo errorUnexplained heterogeneity	Error term
Parameter uncertainty	The uncertainty in estimation of the parameter of interest	Second-order uncertainty	Standard error of the estimate
Heterogeneity	The variability between patients that can be attributed to characteristics of those patients	VariabilityObserved or explained heterogeneity	The Beta coefficients (or variability of fitted dependent variable)
Structural uncertainty	The assumptions inherent in the presentation of the decision modeling form	Model uncertainty	The form of the regression model (linear/log-linear etc.)

Parameter estimation & uncertainty

Estimating Parameters

- While completely <u>arbitrary analyses</u> (e.g., varying an input parameter by +/- 50%) can be used as a measure of sensitivity, they <u>should not be used to represent uncertainty</u>
- © Consider using <u>commonly adopted standards from statistics</u>, such as 95% confidence intervals, or distributions based on agreed statistical methods for a given estimation problem
- Where there is very little information, <u>analysts should adopt a conservative approach</u>
- In choosing distributional forms for parameters in a probabilistic sensitivity analysis, favor should be given to continuous <u>distributions that provide a realistic portrayal of uncertainty</u> over the theoretical range of the parameter of interest
- © Correlation among parameters should be considered

Structural Uncertainty

- Where <u>uncertainties in structural assumptions</u> were identified in the process of conceptualizing and building a model, those assumptions <u>should</u> be tested in a sensitivity analysis
 - Consideration should be given to opportunities to <u>parameterize these uncertainties</u> for ease of testing
 - Where it is not possible to perform structural sensitivity analysis it is nevertheless important that analysts be aware of the <u>potential for this form of</u> <u>uncertainty to be at least as important as</u> <u>parameter uncertainty</u> for the decision maker

Reporting Uncertainty

- Our Uncertainty analyses can be deterministic or probabilistic
 - often appropriate to report aspects of both
- When <u>additional assumptions or parameter values</u> are introduced <u>for</u> purposes of <u>uncertainty analyses</u>, these values <u>should be disclosed & justified</u>
- When model calibration is used to derive parameters, uncertainty around the calibrated values should also be reported, & this uncertainty should be reflected
- When the purpose of a probabilistic sensitivity analysis is to guide decisions about acquisition of information to reduce uncertainty, results should be presented in terms of expected value of information
- When more than two comparators are involved, <u>CEACs for each comparator should be plotted on the same graph</u>

Dynamic Transmission Models

Dynamic Transmission Models

- What are they:
 - Models where the risk of infection is dependent on the number of infectious agents at a given point in time
- When to use:
 - When evaluating an intervention for an infectious disease that
 - 1) has an impact on disease transmission in the population, and/or
 - 2) alters the frequency distribution of strains (e.g., genotypes or serotypes)
- Use appropriate type based on complexity of the interactions, size of the population, and role of chance
 - Can be deterministic or stochastic, cohort or individual
 - Justification for the model structure should be given

Agent-based Models

- If using an agent-based model, thoroughly describe
 - the rules governing the agents,
 - the input parameter values,
 - initial conditions and all
 - sub-models

State-Transition Models

Structure

- © Cohort or individual simulation?
 - Cohort: if the decision problem can be represented with a manageable number of health states incorporating all characteristics relevant to the decision problem
 - Individual: if unmanageable number of states
- Validity should not be sacrificed for simplicity
- Specification of <u>states and transitions should reflect</u> the biological/theoretical understanding of the <u>disease</u> or condition being modeled
- States need to be homogeneous with respect to the observed and unobserved (i.e., not known by the decision maker) characteristics that affect transition probabilities
- © Cycle length should be short enough to represent the frequency of clinical events and interventions

Parameters

- Parameters relating to the intervention effectiveness derived from observational studies should be correctly controlled for confounding
 - Time-varying confounding is of particular concern in estimating intervention effects

Reporting

- © Communicate <u>key structural elements</u>, <u>assumptions</u> and <u>parameters</u> using nontechnical language and clear figures that enhance understanding of the model
- Depending on the problem, report <u>not only</u> the <u>expected</u> <u>value</u> but <u>also the distribution</u> of the outcomes of interest.
- In addition to final outcomes, <u>intermediate outcomes</u> <u>should be presented</u> that enhance understanding and transparency of the results
- Paper contains illustrative examples of both cohort & microsimulation

Discrete Event Simulation

Areas of Application

- © Constrained resource scenarios
 - Optimising the delivery of services
 - technologies result in differing levels of access (e.g. different referral rates) and
 - time to access resources can have significant effects on costs and/or outcomes
- Non-constrained resource scenarios
 - More complex health technology assessments
 - An alternative to individual state-transition models
 - Provides additional flexibility in representing time

Structure

- To simplify debugging and updating, sub-models should be used
- If downstream decisions can have significant effects on costs or outcomes, structure should facilitate analyses of alternative downstream decisions
- Mechanism for applying ongoing risks should remain active over the relevant time horizon
- For structural sensitivity analyses, alternative structures should be implemented within a single DES

Parameterisation

- With competing risks, parameterisation approaches that represent correlations between the competing events are preferred
 - Rather than specifying separate time to event curves for each event.
- Where possible, progression of continuous disease parameters and the likelihood of related events should be defined jointly
 - e.g., sample the level of the continuous measure at which an event occurs, then sample the time at which the level is reached

Implementation

- Software choice depends on importance of flexibility & execution speed (general programming) vs. efficiency
 - Spreadsheet software is inappropriate for implementing DES
- Outputs should
 - be stored as attributes only when individual outcomes are required,
 otherwise aggregated values should be collected from each run
 - account for the outputs required for validation
- When run times are constrained,
 - optimal combination of run size & numbers of alternative input parameter sets tested should be estimated empirically
 - variance reduction techniques should be implemented
 - factorial design and optimum seeking approaches can be used
 - meta-modelling can be used
- If system is not empty at start, use a warm-up period if:
 - it can be assumed that the key parameters have remained constant over time
 - history of the key parameters can be incorporated into the warm-up period

Reporting

- Animated representation that displays the experience of events by individuals is recommended as a means of engaging with users, as well to helping to debug the model through the identification of illogical movements
- Both general and detailed representations of a DES model's structure and logic should be reported to cover the needs of alternative users of the model

Transparency & Validation

Transparency

- Every model should have <u>non-technical documentation</u> that should
 - Be **freely accessible** to any interested reader
 - Describe in non-technical terms the type of model and intended applications; funding sources; structure of the model; inputs, outputs, other components that determine the model's function, and their relationships; data sources; validation methods and results; and limitations.
- Every model should have <u>technical documentation</u> that should
 - Be made available at the discretion of the modelers either <u>openly or</u> <u>under agreements that protect intellectual property</u>
 - written in sufficient detail to enable a reader with the necessary expertise to evaluate the model and potentially reproduce it
- Modelers should <u>identify parts</u> of a model <u>that couldn't be</u> <u>validated</u> because of lack of suitable data sources, and describe how uncertainty about those parts is addressed.
- For multi-application models, <u>describe criteria for</u> determining when validations should be repeated and/or expanded.

Validation

- <u>Face validity</u> of structure, evidence, problem formulation, and results
 - Should be made by people who have <u>expertise</u> in the problem area, but are <u>impartial</u> to the results
 - Process used should be described
 - If <u>questions</u> about the model arise, these issues should be discussed
- Verification (internal validity/consistency)
 - Should be <u>described</u> in the non-technical documentation
 - Results should be <u>made available on request</u>
- Published models of same or similar problems should be sought and similarities and differences discussed

External Validation

- Formal process for conducting external validation that includes:
 - Systematic identification & justification of data sources
 - Specification of whether a data source is
 - o dependent,
 - partially dependent, or
 - o independent;
 - Description of which parts of the model are evaluated by each
 - Simulation of each data source and comparison of results
 - Measures of how results match observed outcomes
- Description of external validation & results available on request
- When feasible, test for prediction of future events
- Seek opportunities to conduct predictive validations as part of the overall validation process

Final Poll

- Which of the following recommendations do you agree with least?
 - Structure linked to problem and not based on data availability
 - Model simplicity is desirable
 - Varying inputs arbitrarily does not represent uncertainty
 - Technical documentation should be detailed enough to reproduce model
 - I agree will all of them

